Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765557

ABSTRACT

In this paper, we discuss the creation of a hybrid magnetorheological elastomer that combines nano- and microparticles. The mixture contained 45 wt.% fillers, with combinations of either 0% nanoparticles and 100% microparticles or 25% nanoparticles and 75% microparticles. TGA and FTIR testing confirmed the materials' thermal and chemical stability, while an SEM analysis determined the particles' size and morphology. XRD results were used to determine the crystal size of both nano- and microparticles. The addition of reinforcing particles, particularly nanoparticles, enhanced the stiffness of the composite materials studied, but their overall strength was only minimally affected. The computed interaction parameter relative to the volume fraction was consistent with the previous literature. Furthermore, the study observed a magnetic response increment in composite materials reinforced with nanoparticles above 30 Hz. The isotropic material containing only microparticles had a lower storage modulus than the isotropic sample with nanoparticles without a magnetic field. However, when a magnetic field was applied, the material with only microparticles exhibited a higher storage modulus than the samples with nanoparticles.

2.
Polymers (Basel) ; 15(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765633

ABSTRACT

Dimensional analysis through the Buckingham Pi theorem was confirmed as an efficient mathematical tool to model the otherwise non-linear high order ultrasonic micro-injection molding process (UMIM). Several combinations of processing conditions were evaluated to obtain experimental measurements and validate the derived equations. UMIM processing parameters, output variable energy consumption, and final specimen's Young modulus were arranged in dimensionless groups and formulated as functional relationships, which lead to dimensionless equations that predict output variables as a function of the user-specified processing parameters and known material properties.

3.
Polymers (Basel) ; 15(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37688207

ABSTRACT

In this study, a piezoelectric harvesting device was developed using polyvinylidene fluoride (PVDF) nanofibers reinforced with either BaTiO3 nanoparticles or graphene powder. BaTiO3 nanoparticles were synthesized through the sol-gel method with an average size of approximately 32 nm. The PVDF nanofibers, along with the nanoparticle composites in an acetone-N,N-dimethylformamide mixture, were produced using a centrifugal Forcespinning™ machine, resulting in a heterogeneous arrangement of fiber meshes, with an average diameter of 1.6 µm. Experimental tests revealed that the electrical performance of the fabricated harvester reached a maximum value of 35.8 Voc, demonstrating the potential of BaTiO3/ PVDF-based piezoelectric devices for designing wearable applications such as body-sensing and energy-harvesting devices.

4.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511597

ABSTRACT

Additive manufacturing and nanotechnology have been used as fundamental tools for the production of nanostructured parts with magnetic properties, expanding the range of applications in additive processes through tank photopolymerization. Magnetic cobalt ferrite (CoFe2O4) and barium ferrite (BaFe12O19) nanoparticles (NPs) with an average size distribution value (DTEM) of 12 ± 2.95 nm and 37 ± 12.78 nm, respectively, were generated by the hydroxide precipitation method. The dispersion of the NPs in commercial resins (Anycubic Green and IRIX White resin) was achieved through mechanochemical reactions carried out in an agate mortar for 20 min at room temperature, with limited exposure to light. The resulting product of each reaction was placed in amber vials and stored in a box to avoid light exposure. The photopolymerization process was carried out only at low concentrations (% w/w NPs/resin) since high concentrations did not result in the formation of pieces, due to the high refractive index of ferrites. The Raman spectroscopy of the final pieces showed the presence of magnetic NPs without any apparent chemical changes. The electron paramagnetic resonance (EPR) results of the pieces demonstrated that their magnetic properties were maintained and not altered during the photopolymerization. Although significant differences were observed in the dispersion process of the NPs in each piece, we determined that the photopolymerization did not affect the structure and superparamagnetic behavior of ferrite NPs during processing, successfully transferring the magnetic properties to the final 3D-printed piece.


Subject(s)
Nanoparticles , Nanostructures , Nanoparticles/chemistry , Cobalt/chemistry , Ferric Compounds/chemistry , Magnetics , Magnetic Phenomena
5.
Soft Robot ; 10(6): 1181-1198, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37352411

ABSTRACT

The growing interest in soft materials to develop flexible devices involves the need to create accurate methodologies to determine parameter values of constitutive models to improve their modeling. In this work, a novel approach for the optimization of constitutive model parameters is presented, which consists of using a genetic algorithm (GA) to obtain a set of solutions from data of uniaxial tensile tests, which are later used to simulate the mechanical test using finite element analysis (FEA) software to find an optimal solution considering Drucker's stability criterion. This approach was applied to the elastomer Ecoflex 00-30 considering the Warner and Yeoh models and Rivlin's phenomenological theory. The correlation between the experimental and the predicted data by the models was determined using the root mean squared error (RMSE), where the found parameter sets provided a close fit to the experimental data with RMSE values of 0.022 (ANSYS) and 0.024 (ABAQUS) for Warner's model, while for Yeoh's model were 0.014 (ANSYS) and 0.012 (ABAQUS). It was found that the best parameter values accurately follow the experimental material behavior using FEA. The proposed GA not only optimizes the material parameters but also has a high reproducibility level with average RMSE values of 0.024 for Warner's model and 0.009 for Yeoh's model, fulfilling Drucker's stability criterion.

6.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36234663

ABSTRACT

This article explores the industrial application of an Al-based nanocomposite reinforced with 0.5 wt.% of multiwalled carbon nanotubes with a Zn mechanical plating applied to fulfill the field requirements of electrical devices. The performance of electric devices made from this nanocomposite material and with a Zn plating was compared with that of MCCB devices using a normal Cu compound. MCCB devices with the Al-based nanocomposites compound showed a better performance, with less heat generated due to a flow of electrical charge passing through the device. The presence of MWCNTs in the Al nanocomposite dissipates heat, maintaining a stable electrical resistance in the MCCB, in contrast to what happens with Cu compound, which increases its electrical resistance as the temperature in the device increases.

7.
Pharmaceutics ; 14(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35745689

ABSTRACT

Opuntia ficus-indica (L.) Mill (OFI) is considered a natural source of bioactive phytochemicals, mainly isorhamnetin glycosides (IRGs). These compounds have demonstrated antioxidant, anti-inflammatory, and anticancer activities, among others. The development of a suitable delivery system for these compounds is needed to improve their chemical and biological stability. This study aimed to evaluate the feasibility of fabrication and characterization of IRG-loaded gelatin (GL) forcespun fibers and crosslinking with glutaraldehyde (GTA). Two different percentages (25% and 30% w/v) of GL were evaluated with 12% (w/v) OFI flour to obtain nanofibers GL/OFI1 and GL/OFI2, respectively. The morphology and physicochemical properties of the fibers were investigated. The results indicated that the diameters of the fibers were on the nanoscale. The amount of IRGs was determined using high-performance liquid chromatography (HPLC). The IRGs release and the cytocompatibility of the nanofibers were also evaluated. GL concentration significantly affected the IRG release. Among both nanofibers, the GL/OFI2 nanofiber achieved a cumulative IRGs release of 63% after 72 h. Both fibers were shown to be biocompatible with human skin/fibroblast cells. Specifically, GL/OFI1 nanofibers exhibited favorable features for their application as an extract-coupled release system. The IRGs-embedded GL nanofiber mats may become a good alternative for the delivery of phytochemicals for the health sector and biomedical applications.

8.
Polymers (Basel) ; 14(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406279

ABSTRACT

In this article, a recent formulation for real-time simulation is developed combining the strain energy density of the Spring Mass Model (SMM) with the equivalent representation of the Strain Energy Density Function (SEDF). The resulting Equivalent Energy Spring Model (EESM) is expected to provide information in real-time about the mechanical response of soft tissue when subjected to uniaxial deformations. The proposed model represents a variation of the SMM and can be used to predict the mechanical behavior of biological tissues not only during loading but also during unloading deformation states. To assess the accuracy achieved by the EESM, experimental data was collected from liver porcine samples via uniaxial loading and unloading tensile tests. Validation of the model through numerical predictions achieved a refresh rate of 31 fps (31.49 ms of computation time for each frame), achieving a coefficient of determination R2 from 93.23% to 99.94% when compared to experimental data. The proposed hybrid formulation to characterize soft tissue mechanical behavior is fast enough for real-time simulation and captures the soft material nonlinear virgin and stress-softened effects with high accuracy.

9.
Polymers (Basel) ; 14(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335432

ABSTRACT

In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure-property-processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential scanning calorimetry (DSC) measurements and the Flynn-Wall-Ozawa, Kissinger, Borchardt-Daniels, and Friedman approaches. The DSC thermograms show two exothermic peaks that were deconvoluted as two separate reactions that follow autocatalytic models. Furthermore, the mechanical properties of produced carbon fiber/Aerotuf 275-34™ laminates using thermosetting polymers such as epoxies, phenolics, and cyanate esters were evaluated as a function of the conversion degree, and a close correlation was found between the degree of curing and the ultimate tensile strength (UTS). We found that when the composite material is cured at 160 °C for 15 min, it reaches a conversion degree of 0.97 and a UTS value that accounts for 95% of the maximum value obtained at 200 °C (180 MPa). Thus, the application of such processing conditions could be enough to achieve good mechanical properties of the composite laminates. These results suggest the possibility for the development of strategies towards manufacturing high-performance materials based on the modified epoxy resin (Aerotuf 275-34™) through the curing process.

10.
Materials (Basel) ; 15(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35208089

ABSTRACT

Using experimental measurements and numerical computations, this paper focuses on studying the evolution of the plastic zone and how the residual stresses change in a notched T-6061 aluminum sample. Before the crack initiation, digital image measurements were taken to visualize the evolution of the plastic zone. After the sample was fractured, the material microstructure and the residual stresses around the cracked zone were characterized through optical microscopy and X-ray diffractometry. This article describes in detail how the plastic zone evolved around the notch before the crack initiation and shows the close agreement between experimental and numerical data during the load increment. The surface residual stress values around the tip of the notched sample were also measured and computed to give a better understanding of the affected region during the fracture process.

11.
Polymers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616474

ABSTRACT

In this study, the effect of single-walled carbon nanotubes (SWCNTs) on the cross-linking of natural rubber (NR) using organic peroxides was investigated. NR-SWCNTs nanocomposites were prepared in an open two-roller mill followed by vulcanization with the compression molding process. Three different organic peroxides, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (T29), dicumyl peroxide (DCP), and 2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-hexyne (T145), were used as vulcanizing agents. SWCNTs promote a remarkable reduction in the vulcanization time and increase the degree of cross-linking of vulcanized rubber when compared with neat or natural rubber-carbon-black composites; the same tendency was obtained in the NR-SWCNTs vulcanized with sulfur. Additionally, the mechanical performance of the NR-SWCNTs composites was significantly improved up to 75, 83, 27, and 10% for tensile strength, moduli, tear strength, and hardness. Raman spectroscopy studies evidence the occurrence of reaction between nanotube walls and free radicals generated from using organic peroxides during the vulcanization process. These results demonstrate that the incorporation of SWCNTs in combination with the use of organic peroxides for the NR vulcanization represents a potential alternative for the improvement of the physicochemical properties of NR composites.

12.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34947721

ABSTRACT

The aim of this paper focuses on presenting a recent study that describes the fundamental steps needed to effectively scale-up from lab to mass production parts produced from Al powders reinforced with 0.5 wt% of industrial multiwalled carbon nanotubes (MWCNTs), with mechanical and electrical conductivity properties higher that those measured at the lab scale. The produced material samples were produced via a Spark Plasma Sintering (SPS) process using nanocomposite aluminum powders elaborated with a planetary ball-mill at the lab scale, and high-volume attrition milling equipment in combination with controlled atmosphere sinter hardening furnace equipment, which were used to consolidate the material at the industrial level. Surprisingly, the electrical conductivity and mechanical properties of the samples produced with the reinforced nanocomposite Al powders were made with mass production equipment and were similar or higher than those samples fabricated using metallic powders prepared with ball-mill lab equipment. Experimental measurements show that the hardness and the electrical conductivity properties of the samples fabricated with the mass production Al powders are 48% and 7.5% higher than those of the produced lab samples. This paper elucidates the steps that one needs to follow during the mass production process of reinforced aluminum powders to improve the physical properties of metallic samples consolidated via the SPS process.

13.
Polymers (Basel) ; 13(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34833309

ABSTRACT

Product miniaturization is a constant trend in industries that demand ever-smaller products that can be mass produced while maintaining high precision dimensions in the final pieces. Ultrasonic micro injection molding (UMIM) technology has emerged as a polymer processing technique capable of achieving the mass production of polymeric parts with micro-features, while still assuring replicability, repeatability, and high precision, contrary to the capabilities of conventional processing technologies of polymers. In this study, it is shown that the variation of parameters during the UMIM process, such as the amplitude of the ultrasound waves and the processing time, lead to significant modification on the molecular structure of the polymer. The variation of both the amplitude and processing time contribute to chain scission; however, the processing time is a more relevant factor for this effect as it is capable of achieving a greater chain scission in different areas of the same specimen. Further, the presence of polymorphism within the samples produced by UMIM is demonstrated. Similarly to conventional processes, the UMIM technique leads to some degree of chain orientation, despite the fact that it is carried out in a relatively small time and space. The results presented here aim to contribute to the optimization of the use of the UMIM process for the manufacture of polymeric micro parts.

14.
Materials (Basel) ; 14(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300892

ABSTRACT

This paper focuses on studying how mineral oil, sunflower, soybean, and corn lubricants influence friction and wear effects during the manufacturing of aluminum parts via the single point incremental forming (SPIF) process. To identify how friction, surface roughness, and wear change during the SPIF of aluminum parts, Stribeck curves were plotted as a function of the SPIF process parameters such as vertical step size, wall angle, and tool tip semi-spherical diameter. Furthermore, lubricant effects on the surface of the formed parts are examined by energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM) images, the Alicona optical 3D measurement system, and Fourier-transform infrared spectroscopy (FTIR). Results show that during the SPIF process of the metallic specimens, soybean and corn oils attained the highest friction, along forces, roughness, and wear values. Based on the surface roughness measurements, it can be observed that soybean oil produces the worst surface roughness finish in the direction perpendicular to the tool passes (Ra =1.45 µm) considering a vertical step size of 0.25 mm with a 5 mm tool tip diameter. These findings are confirmed through plotting SPIFed Stribeck curves for the soybean and corn oils that show small hydrodynamic span regime changes for an increasing sample step-size forming process. This article elucidates the effects caused by mineral and vegetable oils on the surface of aluminum parts produced as a function of Single Point Incremental Sheet Forming process parameters.

15.
J Mech Behav Biomed Mater ; 120: 104554, 2021 08.
Article in English | MEDLINE | ID: mdl-33932864

ABSTRACT

This article focuses on obtaining ultra high molecular weight polyethylene (UHMWPE) material reinforced with functionalized single-walled carbon nanotubes (f-SWCNTs) and the manufacturing of unicompartmental knee implants via Single-Point Incremental Forming process (SPIF). The physicochemical properties of the developed UHMWPE reinforced with 0.01 and 0.1 wt% concentrations of f-SWCNTs are investigated using Raman and Thermogravimetic Analysis (TGA). Tensile mechanical tests performed in the nanocomposite material samples reveal a 12% improvement in their Young's modulus when compare to that of the pure UHMWPE material samples. Furthermore, the surface biocompatibility of the UHMWPE reinforced with f-SWCNTs materials samples was evaluated with human osteoblast cells. Results show cell viability enhancement with good cell growth and differentiation after 14 incubation days, that validates the usefulness of the developed nanocomposite material in the production of hip and knee artificial implants, and other biomedical applications.


Subject(s)
Knee Prosthesis , Nanotubes, Carbon , Humans , Materials Testing , Polyethylenes , Surface Properties
16.
Polymers (Basel) ; 13(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919897

ABSTRACT

This work focuses on investigating the curing process of an epoxy-based resin-Aerotuf 275-34TM, designed for aerospace applications. To study the curing degree of Aerotuf 275-34TM under processing conditions, woven carbon fiber fabric (WCFF)/Aerotuf 275-34TM composite laminates were produced by compression molding using different processing temperatures (110, 135, 160, and 200 °C) during 15 and 30 min. Then, the mechanical behavior of the composite laminates was evaluated by tensile tests and correlated to the resin curing degree through Fourier-transform infrared spectroscopy (FTIR) analysis. The results show the occurrence of two independent reactions based on the consumption of epoxide groups and maleimide (MI) double bonds. In terms of epoxide groups, a conversion degree of 0.91 was obtained for the composite cured at 160 °C during 15 min, while the measured tensile properties of [±45°] WCFF/Aerotuf 275-34TM laminates confirmed that these epoxy resin curing processing conditions lead to an enhancement of the composite mechanical properties.

17.
Materials (Basel) ; 14(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807013

ABSTRACT

In this work, a previously developed mathematical model to predict bulk density of SLMed (produced via Selective Laser Melting) component is enhanced by taking laser power, scanning speed, hatch spacing, powder's thermal conductivity and specific heat capacity as independent variables. Experimental data and manufacturing conditions for the selective laser melting (SLM) of metallic materials (which include aluminum, steel, titanium, copper, tungsten and nickel alloys) are adapted from the literature and used to evaluate the validity of the proposed enhanced model. A strong relation between dependent and independent dimensionless products is observed throughout the studied materials. The proposed enhanced mathematical model shows to be highly accurate since the computed root-mean-square-error values (RMSE) does not exceed 5 × 10-7. Furthermore, an analytical expression for the prediction of bulk density of SLMed components was developed. From this, an expression for determining the needed scanning speed, with respect to laser power, to achieve highly dense components produced via SLM, is derived.

18.
Mater Sci Eng C Mater Biol Appl ; 123: 112004, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812624

ABSTRACT

Nanostructured Zn1-xYbxO (0.0 ≤ x ≤ 0.1) powders were prepared by the solution method using polyvinyl alcohol (PVA) and sucrose. The effect of the ytterbium doping content on the structural, morphological, optical and antimicrobial properties was analyzed. X-ray diffraction (XRD) analysis revealed that the hexagonal wurtzite structure was retained, and no secondary phases due to doping were observed. The crystallite size was under 20 nm for all the Zn1-xYbxO (0.0 ≤ x ≤ 0.1) powders. The optical band gap was calculated, and the results revealed that this value increased with the ytterbium content, and the Eg values varied from 3.06 to 3.10 eV. The surface chemistry of the powders was analyzed using X-ray photoelectron spectroscopy (XPS), and the results confirmed the oxidation state of ytterbium as 3+ for all the samples. Zn1-xYbxO (0.0 ≤ x ≤ 0.1) nanoparticles were tested as antimicrobial agents against Staphylococcus aureus and Escherichia coli, resulting in a potential antimicrobial effect at most of the tested concentrations. These results were used in an artificial neural network (ANN). The results showed that it is possible to generate a model capable of forecasting the absorbance with good precision (error of 1-2%).


Subject(s)
Anti-Infective Agents , Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Staphylococcus aureus , Zinc Oxide/pharmacology
19.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925115

ABSTRACT

This article focuses on exploring how the electrical conductivity and densification properties of metallic samples made from aluminum (Al) powders reinforced with 0.5 wt % concentration of multi-walled carbon nanotubes (MWCNTs) and consolidated through spark plasma sintering (SPS) process are affected by the carbon nanotubes dispersion and the Al particles morphology. Experimental characterization tests performed by scanning electron microscopy (SEM) and by energy dispersive spectroscopy (EDS) show that the MWCNTs were uniformly ball-milled and dispersed in the Al surface particles, and undesirable phases were not observed in X-ray diffraction measurements. Furthermore, high densification parts and an improvement of about 40% in the electrical conductivity values were confirmed via experimental tests performed on the produced sintered samples. These results elucidate that modifying the powder morphology using the ball-milling technique to bond carbon nanotubes into the Al surface particles aids the ability to obtain highly dense parts with increasing electrical conductivity properties.

20.
Materials (Basel) ; 14(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494386

ABSTRACT

In this work, dimensional analysis is used to develop a general mathematical model to predict bulk density of SLMed components taking volumetric energy density, scanning speed, powder's thermal conductivity, specific heat capacity, and average grain diameter as independent variables. Strong relation between dependent and independent dimensionless products is observed. Inconel 718 samples were additively manufactured and a particular expression, in the form of a power-law polynomial, for its bulk density, in the working domain of the independent dimensionless product, was obtained. It is found that with longer laser exposure time, and lower scanning speed, better densification is attained. Likewise, volumetric energy density has a positive influence on bulk density. The negative effect of laser power in bulk density is attributed to improper process conditions leading to powder particle sublimation and ejection. A maximum error percentage between experimental and predicted bulk density of 3.7119% is achieved, which corroborates the accuracy of our proposed model. A general expression for determining the scanning speed, with respect to laser power, needed to achieve highly dense components, was derived. The model's applicability was further validated considering SLMed samples produced by AlSi10Mg and Ti6Al4V alloys. This article elucidates how to tune relevant manufacturing parameters to produce highly dense SLM parts using mathematical expressions derived from Buckingham's π- theorem.

SELECTION OF CITATIONS
SEARCH DETAIL
...